login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376673
Least number whose maximum frequency in a fixed row of A036038 (or A078760) is equal to n, i.e., least number m such that A376663(m) = n, or 0 if no such number exists.
5
1, 56, 166320, 4084080, 1396755360, 698377680, 146659312800, 1075501627200, 37104806138400, 3710480613840000, 296838449107200, 86825246363856000, 96472495959840000, 36466603472819520000, 35251050023725536000, 272194921062320256000, 408292381593480384000
OFFSET
1,2
COMMENTS
After a(36), the sequence continues (where "?" represents terms that are either 0 or greater than 10^29): ?, 3059734941813910128088320000, ?, ?, 64254433778092112689854720000. After a(41), all terms are either 0 or greater than 10^29.
The terms a(1), a(3), ..., a(15), a(24), a(26), ..., a(36), a(38), a(41) are all in A025487, but a(16), ..., a(23), a(25) are all divisible by 17^2 but not by 13^2.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..36
EXAMPLE
First few terms and their representations as multinomial coefficients (corresponding to partitions with sum A376664(n)):
a(1) = 1 = 0!;
a(2) = 56 = 8!/(1!*1!*6!) = 8!/(3!*5!);
a(3) = 166320 = 12!/(1!*1!*1!*4!*5!) = 12!/(1!*1!*2!*2!*6!) = 12!/(2!*2!*3!*5!);
a(4) = 4084080 = 17!/(1!*1!*1!*4!*10!) = 17!/(1!*2!*5!*9!) = 17!/(2!*2!*3!*10!) = 17!/(4!*6!*7!);
a(5) = 1396755360 = 19!/(1!*1!*1!*1!*1!*4!*10!) = 19!/(1!*1!*1!*2!*5!*9!) = 19!/(1!*1!*2!*2!*3!*10!) = 19!/(1!*1!*4!*6!*7!) = 19!/(3!*4!*5!*7!).
CROSSREFS
First column of A376667.
Sequence in context: A177325 A135315 A376666 * A135426 A028670 A278608
KEYWORD
nonn
AUTHOR
STATUS
approved