login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376523
a(n) = Product_{k=0..n} (k^3 + n - k).
4
0, 1, 32, 2187, 286720, 64796875, 23279477760, 12506434235113, 9582123576983552, 10084099499408154825, 14139206937856000000000, 25756714724499975610869475, 59683270195198565091221962752, 172781591936242461223503558613507, 615312169743368293769528795463680000
OFFSET
0,3
FORMULA
a(n) ~ exp(2*Pi*n^(1/3)/sqrt(3) - 3*n) * n^(3*n+2) * (1 - 2*Pi/(3^(3/2)*n^(1/3)) + 2*Pi^2/(27*n^(2/3)) + (27/40 - 4*Pi^3/(243*sqrt(3)))/n).
MAPLE
A376523 := proc(n)
mul(k^3+n-k, k=0..n) ;
end proc:
seq(A376523(n), n=0..20) ; # R. J. Mathar, Sep 27 2024
MATHEMATICA
Table[Product[k^3+n-k, {k, 0, n}], {n, 0, 16}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Sep 26 2024
STATUS
approved