login
A376292
E.g.f. satisfies A(x) = 1 - (x*A(x))^3 * log(1 - x*A(x)).
0
1, 0, 0, 0, 24, 60, 240, 1260, 169344, 1693440, 17150400, 187941600, 12778698240, 271809457920, 5031211086720, 91848556800000, 4643532967772160, 154079136039628800, 4367731446302515200, 117143657916761548800, 5457792037686441984000
OFFSET
0,5
FORMULA
a(n) = (n!)^2 * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,k)|/( (n-3*k)! * (n-k+1)! ).
E.g.f.: (1/x) * Series_Reversion( x/(1 - x^3*log(1 - x)) ).
PROG
(PARI) a(n) = n!^2*sum(k=0, n\4, abs(stirling(n-3*k, k, 1))/((n-3*k)!*(n-k+1)!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 19 2024
STATUS
approved