Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Sep 10 2024 08:44:04
%S 1,2,8,48,140,244,620,705,1395,6210,9656,14322,52024,88128,95589,
%T 119440,151130,325105,407128,472790,520971,686103,4456608,7066416,
%U 13207389,15488160,23381160,42317212,49496700,53564016,128163495,165750096,387900480,421730960,485880806
%N Tribonacci-Niven numbers (A352089) with a record gap to the next tribonacci-Niven number.
%C The corresponding record gaps are 1, 2, 4, 8, 9, 12, 15, 20, ... (see the link for more values).
%C Ray (2005) and Ray and Cooper (2006) proved that the asymptotic density of the tribonacci-Niven numbers is 0. Therefore, this sequence is infinite.
%D Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.
%H Amiram Eldar, <a href="/A376029/b376029.txt">Table of n, a(n) for n = 1..42</a>
%H Amiram Eldar, <a href="/A376029/a376029.txt">Table of n, a(n), gap(n) for n = 1..42</a>
%H Andrew Ray and Curtis Cooper, <a href="http://cs.ucmo.edu/~cnc8851/articles/kzeckniven.pdf">On the natural density of the k-Zeckendorf Niven numbers</a>, J. Inst. Math. Comput. Sci. Math., Vol. 19 (2006), pp. 83-98.
%e The first 7 tribonacci-Niven numbers are 1, 2, 4, 6, 7, 8 and 12. The gaps between them are 1, 2, 2, 1, 1 and 4, and the record gaps, 1, 2 and 4 occur after 1, 2 and 8, the first 3 terms of this sequence.
%t t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; tnQ[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; s++; m -= t[k]; k = 1]; Divisible[n, s]]; seq[kmax_] := Module[{gapmax = 0, gap, k1 = 1, s = {}}, Do[If[tnQ[k], gap = k - k1; If[gap > gapmax, gapmax = gap; AppendTo[s, k1]]; k1 = k], {k, 2, kmax}]; s]; seq[10^4]
%Y Cf. A352089, A352090.
%Y Similar sequences: A337076, A337077, A347495, A347496, A376028.
%K nonn,base
%O 1,2
%A _Amiram Eldar_, Sep 06 2024