login
A352089
Tribonacci-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the tribonacci numbers (A278038).
13
1, 2, 4, 6, 7, 8, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 30, 33, 36, 39, 40, 44, 46, 48, 56, 60, 68, 69, 72, 75, 76, 80, 81, 82, 84, 87, 88, 90, 94, 96, 100, 108, 115, 116, 120, 126, 128, 129, 132, 135, 136, 138, 140, 149, 150, 156, 162, 168, 174, 176, 177, 180
OFFSET
1,2
COMMENTS
Numbers k such that A278043(k) | k.
The positive tribonacci numbers (A000073) are all terms.
If k = A000073(A042964(m)) is an odd tribonacci number, then k+1 is a term.
Ray (2005) and Ray and Cooper (2006) called these numbers "3-Zeckendorf Niven numbers" and proved that their asymptotic density is 0. - Amiram Eldar, Sep 06 2024
REFERENCES
Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.
LINKS
Andrew Ray and Curtis Cooper, On the natural density of the k-Zeckendorf Niven numbers, J. Inst. Math. Comput. Sci. Math., Vol. 19 (2006), pp. 83-98.
EXAMPLE
6 is a term since its minimal tribonacci representation, A278038(6) = 110, has A278043(6) = 2 1's and 6 is divisible by 2.
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[180], q]
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Mar 04 2022
STATUS
approved