login
A375982
Number of subsets of {1,2,...,n} such that no two elements differ by 2, 3, or 5.
1
1, 2, 4, 6, 8, 11, 14, 18, 25, 37, 53, 75, 105, 145, 198, 274, 383, 537, 752, 1053, 1468, 2041, 2838, 3954, 5513, 7693, 10737, 14979, 20880, 29100, 40558, 56538, 78828, 109926, 153289, 213736, 297991, 415448, 579198, 807519, 1125889, 1569813, 2188752
OFFSET
0,2
COMMENTS
a(n) is the number of compositions of n+5 into parts 1, 6, 7, 10, 14, 18, 22, ...
LINKS
Michael A. Allen, Combinations without specified separations, Communications in Combinatorics and Optimization (in press).
FORMULA
a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) + a(n-7) - a(n-11) for n >= 11.
G.f.: (1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 - x^7 - x^8 - x^9 - x^10)/(1 - x - x^4 + x^5 - x^6 - x^7 + x^11).
EXAMPLE
For n = 6, the 14 subsets are {}, {1}, {2}, {1,2}, {3}, {2,3}, {4}, {3,4}, {5}, {1,5}, {4,5}, {6}, {2,6}, {5,6}.
MATHEMATICA
CoefficientList[Series[(1 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 - x^7 - x^8 - x^9 - x^10)/(1 - x - x^4 + x^5 - x^6 - x^7 + x^11), {x, 0, 42}], x]
LinearRecurrence[{1, 0, 0, 1, -1, 1, 1, 0, 0, 0, -1}, {1, 2, 4, 6, 8, 11, 14, 18, 25, 37, 53}, 42]
CROSSREFS
See A375981 for other sequences related to restricted combinations.
Sequence in context: A321531 A194224 A194252 * A205727 A213609 A374263
KEYWORD
easy,nonn
AUTHOR
Michael A. Allen, Sep 04 2024
STATUS
approved