login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205727
Number of odd semiprimes <= n^2.
2
0, 0, 1, 2, 4, 6, 8, 11, 14, 19, 23, 28, 33, 37, 46, 51, 56, 66, 73, 80, 88, 96, 108, 118, 126, 134, 148, 159, 172, 183, 197, 207, 220, 234, 249, 263, 280, 297, 309, 323, 338, 356, 376, 393, 412, 427, 449, 465, 482, 505, 527, 544, 561, 582, 606, 634, 658
OFFSET
1,4
COMMENTS
The Goldbach conjecture being true would imply that for every integer j, there exists at least one integer k such that (j^2)-(k^2) is an odd semiprime; i.e., for 2j=p+q, j=(p+q)/2 and k=(p-q)/2 results in (j^2)-(k^2)=pq. [Note that in many cases, 2j can be expressed as the sum of more than one set of two primes.] See A205728 for related series where p must be distinct from q.
MATHEMATICA
SemiPrimeQ[n_Integer] := If[Abs[n] < 2, False, (2 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; nn = 100; t = Select[Range[1, nn^2, 2], SemiPrimeQ]; Table[Length[Select[t, # <= n^2 &]], {n, nn}] (* T. D. Noe, Jan 30 2012 *)
With[{osp=Table[{n, PrimeOmega[n]}, {n, 1, 10001, 2}]}, Table[ Count[ Select[ osp, #[[1]]<=k^2&], _?(#[[2]]==2&)], {k, 60}]] (* Harvey P. Dale, Dec 29 2017 *)
PROG
(PARI) a(n) = sum(k=1, n^2, (k%2) && (bigomega(k) == 2)); \\ Michel Marcus, Feb 24 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Keith Backman, Jan 30 2012
STATUS
approved