login
A375966
Powers of 3 alternating with powers of 4.
1
1, 1, 3, 4, 9, 16, 27, 64, 81, 256, 243, 1024, 729, 4096, 2187, 16384, 6561, 65536, 19683, 262144, 59049, 1048576, 177147, 4194304, 531441, 16777216, 1594323, 67108864, 4782969, 268435456, 14348907, 1073741824, 43046721, 4294967296, 129140163, 17179869184
OFFSET
0,3
FORMULA
a(n) = 7*a(n-2) - 12*a(n-4) for n >= 4.
From Stefano Spezia, Sep 06 2024: (Start)
G.f.: (1 + x - 4*x^2 - 3*x^3)/((1 - 2*x)*(1 + 2*x)*(1 - 3*x^2)).
a(n) = (4*3^(n/2)*A059841(n) - (-2)^n + 2^n)/4.
E.g.f.: cosh(sqrt(3)*x) + cosh(x)*sinh(x). (End)
MATHEMATICA
seq[len_] := Module[{m = Ceiling[len/2] - 1}, Riffle @@ Map[#^Range[0, m] &, {3, 4}]]; seq[36] (* Amiram Eldar, Sep 05 2024 *)
PROG
(Python)
def A375966(n): return 1<<(n^1) if n&1 else 3**(n>>1) # Chai Wah Wu, Sep 24 2024
CROSSREFS
Cf. A000244 and A000302 interleaved.
Sequence in context: A336450 A372823 A367083 * A271785 A054188 A093368
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 04 2024
STATUS
approved