OFFSET
0,3
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..200
MathsPower et al., Closed form for product of Stirling numbers of the second kind, MathOverflow, 2019.
FORMULA
a(n) = n! * Sum_{k=0..n} k^n/k! * Sum_{m=0}^{n-k} (m+k)!/m!/(n-k-m)! * (-1)^m * S(n,m+k).
G.f.: the diagonal of 1 - t(x,y)*W'(t(x,y)), where t(x,y) := x*(1-e^y)*e^(x*(2-e^y)) and W() is Lambert W function.
a(n) ~ c * d^n * n^(2*n), where d = (2*r-1)^2*r/(exp(2)*(-1 + r + sqrt((1-r)*r))^2) = 0.522647981756854997298666108603651720918622906877425888529..., r = 0.665183670620587020892773716469052817866519211832581651... is the root of the equation (1-r)*(1 + r*LambertW(-1/(exp(1/r)*r)))^2 = r^3*LambertW(-1/(exp(1/r)*r))^2 and c = 1.38671243965876142096898080117513697606381035589463940412659515589... - Vaclav Kotesovec, Nov 07 2024
MATHEMATICA
A375780[n_] := Sum[Binomial[n, k]*(k!*StirlingS2[n, k])^2, {k, 0, n}];
Array[A375780, 20, 0] (* Paolo Xausa, Nov 07 2024 *)
PROG
(PARI) { a375780(n) = sum(k=0, n, binomial(n, k) * (k!*stirling(n, k, 2))^2); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Aug 27 2024
STATUS
approved