login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375694
Number A(n,k) of multiset permutations of {{1}^k, {2}^k, ..., {n}^k} with no fixed k-tuple {j}^k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
3
1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 5, 2, 0, 1, 0, 19, 74, 9, 0, 1, 0, 69, 1622, 2193, 44, 0, 1, 0, 251, 34442, 362997, 101644, 265, 0, 1, 0, 923, 756002, 62924817, 166336604, 6840085, 1854, 0, 1, 0, 3431, 17150366, 11729719509, 305225265804, 136221590695, 630985830, 14833, 0
OFFSET
0,13
LINKS
FORMULA
A(n,k) = Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(k*j)!/k!^j.
EXAMPLE
A(2,2) = 5: 1212, 1221, 2112, 2121, 2211.
A(2,3) = 19: 112122, 112212, 112221, 121122, 121212, 121221, 122112, 122121, 122211, 211122, 211212, 211221, 212112, 212121, 212211, 221112, 221121, 221211, 222111.
A(3,2) = 74: 121323, 121332, 122313, 122331, 123123, 123132, 123213, 123231, 123312, 123321, 131223, 131232, 131322, 132123, 132132, 132312, 132321, 133122, 133212, 133221, 211323, 211332, 212313, 212331, 213123, 213132, 213213, 213231, 213312, 213321, 221313, 221331, 223113, 223131, 223311, 231123, 231132, 231213, 231231, 231312, 231321, 232113, 232131, 232311, 233112, 233121, 233211, 311223, 311232, 311322, 312123, 312132, 312312, 312321, 313122, 313212, 313221, 321123, 321132, 321213, 321231, 321312, 321321, 322113, 322131, 322311, 323112, 323121, 323211, 331122, 331212, 331221, 332112, 332121.
A(4,1) = 9: 2143, 2341, 2413, 3142, 3412, 3421, 4123, 4312, 4321.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 1, 5, 19, 69, 251, ...
0, 2, 74, 1622, 34442, 756002, ...
0, 9, 2193, 362997, 62924817, 11729719509, ...
0, 44, 101644, 166336604, 305225265804, 623302086965044, ...
MAPLE
A:= (n, k)-> add((-1)^(n-j)*binomial(n, j)*(k*j)!/k!^j, j=0..n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
CROSSREFS
Columns k=0-2 give: A000007, A000166, A374980.
Rows n=0-2 give: A000012, A000004, A030662.
Main diagonal gives A375693.
Sequence in context: A249421 A359226 A369286 * A244813 A078110 A334708
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 24 2024
STATUS
approved