login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals of triangles read by rows: the coefficients of the polynomials n! * m^(n-k) * x^k * A094587(n, k), for m >= 0.
0

%I #6 Aug 21 2024 06:01:09

%S 1,1,0,1,1,1,1,2,1,0,1,3,1,2,0,1,4,1,8,2,1,1,5,1,18,4,1,0,1,6,1,32,6,

%T 1,6,0,1,7,1,50,8,1,48,6,0,1,8,1,72,10,1,162,24,3,1,1,9,1,98,12,1,384,

%U 54,6,1,0,1,10,1,128,14,1,750,96,9,1,24,0

%N Array read by ascending antidiagonals of triangles read by rows: the coefficients of the polynomials n! * m^(n-k) * x^k * A094587(n, k), for m >= 0.

%F T(n, m, k) = [x^k] n! * m^n * hypergeom([-n], [-n], x/m)), for n > 0.

%e Sequence of polynomials P(n, m) for n = 0, 1, 2, ...:

%e [0] 1;

%e [1] 1*m + x;

%e [2] 2*m^2 + 2*m*x + x^2;

%e [3] 6*m^3 + 6*m^2*x + 3*m*x^2 + x^3;

%e [4] 24*m^4 + 24*m^3*x + 12*m^2*x^2 + 4*m*x^3 + x^4;

%e [5] 120*m^5 + 120*m^4*x + 60*m^3*x^2 + 20*m^2*x^3 + 5*m*x^4 + x^5;

%e [6] 720*m^6 + 720*m^5*x + 360*m^4*x^2 + 120*m^3*x^3 + 30*m^2*x^4 + 6*m*x^5 + x^6;

%e .

%e Array of the coefficients of the polynomials for m = 0, 1, 2, ...:

%e [0] 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, ... A023531

%e [1] 1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, ... A094587

%e [2] 1, 2, 1, 8, 4, 1, 48, 24, 6, 1, 384, 192, 48, 8, 1, ...

%e [3] 1, 3, 1, 18, 6, 1, 162, 54, 9, 1, 1944, 648, 108, 12, 1, ...

%e [4] 1, 4, 1, 32, 8, 1, 384, 96, 12, 1, 6144, 1536, 192, 16, 1, ...

%e [5] 1, 5, 1, 50, 10, 1, 750, 150, 15, 1, 15000, 3000, 300, 20, 1, ...

%e [6] 1, 6, 1, 72, 12, 1, 1296, 216, 18, 1, 31104, 5184, 432, 24, 1, ...

%e .

%e Seen as triangle:

%e 1;

%e 1, 0;

%e 1, 1, 1;

%e 1, 2, 1, 0;

%e 1, 3, 1, 2, 0;

%e 1, 4, 1, 8, 2, 1;

%e 1, 5, 1, 18, 4, 1, 0;

%e 1, 6, 1, 32, 6, 1, 6, 0;

%e 1, 7, 1, 50, 8, 1, 48, 6, 0;

%e 1, 8, 1, 72, 10, 1, 162, 24, 3, 1;

%e 1, 9, 1, 98, 12, 1, 384, 54, 6, 1, 0;

%p # Computes the polynomials depending on the parameter m.

%p P := (n, m) -> ifelse(m = 0, x^n, n! * m^n * hypergeom([-n], [-n], x/m)):

%p seq(print(simplify(P(n, m))), n = 0..5);

%p # Computes the array of coefficients:

%p P := (n, k, m) -> (n!/k!) * m^(n-k) * x^k:

%p Arow := (m, len) -> local n, k;

%p seq(seq(coeff(P(n, k, m), x, k), k = 0..n), n = 0..len):

%p seq(lprint(Arow(n, 4)), n = 0..6);

%Y Cf. A094587, A023531.

%K nonn,tabl

%O 0,8

%A _Peter Luschny_, Aug 17 2024