login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375466
Array read by ascending antidiagonals of triangles read by rows: the coefficients of the polynomials n! * m^(n-k) * x^k * A094587(n, k), for m >= 0.
0
1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 3, 1, 2, 0, 1, 4, 1, 8, 2, 1, 1, 5, 1, 18, 4, 1, 0, 1, 6, 1, 32, 6, 1, 6, 0, 1, 7, 1, 50, 8, 1, 48, 6, 0, 1, 8, 1, 72, 10, 1, 162, 24, 3, 1, 1, 9, 1, 98, 12, 1, 384, 54, 6, 1, 0, 1, 10, 1, 128, 14, 1, 750, 96, 9, 1, 24, 0
OFFSET
0,8
FORMULA
T(n, m, k) = [x^k] n! * m^n * hypergeom([-n], [-n], x/m)), for n > 0.
EXAMPLE
Sequence of polynomials P(n, m) for n = 0, 1, 2, ...:
[0] 1;
[1] 1*m + x;
[2] 2*m^2 + 2*m*x + x^2;
[3] 6*m^3 + 6*m^2*x + 3*m*x^2 + x^3;
[4] 24*m^4 + 24*m^3*x + 12*m^2*x^2 + 4*m*x^3 + x^4;
[5] 120*m^5 + 120*m^4*x + 60*m^3*x^2 + 20*m^2*x^3 + 5*m*x^4 + x^5;
[6] 720*m^6 + 720*m^5*x + 360*m^4*x^2 + 120*m^3*x^3 + 30*m^2*x^4 + 6*m*x^5 + x^6;
.
Array of the coefficients of the polynomials for m = 0, 1, 2, ...:
[0] 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, ... A023531
[1] 1, 1, 1, 2, 2, 1, 6, 6, 3, 1, 24, 24, 12, 4, 1, ... A094587
[2] 1, 2, 1, 8, 4, 1, 48, 24, 6, 1, 384, 192, 48, 8, 1, ...
[3] 1, 3, 1, 18, 6, 1, 162, 54, 9, 1, 1944, 648, 108, 12, 1, ...
[4] 1, 4, 1, 32, 8, 1, 384, 96, 12, 1, 6144, 1536, 192, 16, 1, ...
[5] 1, 5, 1, 50, 10, 1, 750, 150, 15, 1, 15000, 3000, 300, 20, 1, ...
[6] 1, 6, 1, 72, 12, 1, 1296, 216, 18, 1, 31104, 5184, 432, 24, 1, ...
.
Seen as triangle:
1;
1, 0;
1, 1, 1;
1, 2, 1, 0;
1, 3, 1, 2, 0;
1, 4, 1, 8, 2, 1;
1, 5, 1, 18, 4, 1, 0;
1, 6, 1, 32, 6, 1, 6, 0;
1, 7, 1, 50, 8, 1, 48, 6, 0;
1, 8, 1, 72, 10, 1, 162, 24, 3, 1;
1, 9, 1, 98, 12, 1, 384, 54, 6, 1, 0;
MAPLE
# Computes the polynomials depending on the parameter m.
P := (n, m) -> ifelse(m = 0, x^n, n! * m^n * hypergeom([-n], [-n], x/m)):
seq(print(simplify(P(n, m))), n = 0..5);
# Computes the array of coefficients:
P := (n, k, m) -> (n!/k!) * m^(n-k) * x^k:
Arow := (m, len) -> local n, k;
seq(seq(coeff(P(n, k, m), x, k), k = 0..n), n = 0..len):
seq(lprint(Arow(n, 4)), n = 0..6);
CROSSREFS
Sequence in context: A185962 A279928 A297325 * A278528 A257261 A355141
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 17 2024
STATUS
approved