login
a(n) is the number of distinct straight lines passing through the points (k, prime(k)) and (n, prime(n)) for k < n (where prime(k) denotes the k-th prime number).
2

%I #9 Aug 17 2024 12:19:23

%S 0,1,2,2,4,5,5,5,6,8,9,9,9,11,10,11,13,12,16,16,14,16,16,19,22,22,21,

%T 23,24,23,28,29,27,29,30,29,29,32,31,32,34,35,35,37,36,37,39,42,44,45,

%U 45,43,44,47,47,48,48,49,46,49,49,49,56,56,53,55,61,62

%N a(n) is the number of distinct straight lines passing through the points (k, prime(k)) and (n, prime(n)) for k < n (where prime(k) denotes the k-th prime number).

%H Rémy Sigrist, <a href="/A375421/b375421.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) <= n-1.

%e The first terms, alongside the corresponding lines, are: n a(n) Lines

%e - ---- --------------------------------------------------------------

%e 1 0 {}

%e 2 1 {x + 1}

%e 3 2 {2*x - 1, 3/2*x + 1/2}

%e 4 2 {2*x - 1, 5/3*x + 1/3}

%e 5 4 {4*x - 9, 3*x - 4, 8/3*x - 7/3, 9/4*x - 1/4}

%e 6 5 {3*x - 5, 8/3*x - 3, 5/2*x - 2, 2*x + 1, 11/5*x - 1/5}

%e 7 5 {4*x - 11, 3*x - 4, 10/3*x - 19/3, 14/5*x - 13/5, 5/2*x - 1/2}

%o (PARI) { for (n = 1, #p = primes(68), print1 (#Set(vector(n-1, i, polinterpolate([i, n], [p[i], p[n]])))", ");); }

%Y Cf. A375420.

%K nonn

%O 1,3

%A _Rémy Sigrist_, Aug 14 2024