login
A375421
a(n) is the number of distinct straight lines passing through the points (k, prime(k)) and (n, prime(n)) for k < n (where prime(k) denotes the k-th prime number).
2
0, 1, 2, 2, 4, 5, 5, 5, 6, 8, 9, 9, 9, 11, 10, 11, 13, 12, 16, 16, 14, 16, 16, 19, 22, 22, 21, 23, 24, 23, 28, 29, 27, 29, 30, 29, 29, 32, 31, 32, 34, 35, 35, 37, 36, 37, 39, 42, 44, 45, 45, 43, 44, 47, 47, 48, 48, 49, 46, 49, 49, 49, 56, 56, 53, 55, 61, 62
OFFSET
1,3
LINKS
FORMULA
a(n) <= n-1.
EXAMPLE
The first terms, alongside the corresponding lines, are: n a(n) Lines
- ---- --------------------------------------------------------------
1 0 {}
2 1 {x + 1}
3 2 {2*x - 1, 3/2*x + 1/2}
4 2 {2*x - 1, 5/3*x + 1/3}
5 4 {4*x - 9, 3*x - 4, 8/3*x - 7/3, 9/4*x - 1/4}
6 5 {3*x - 5, 8/3*x - 3, 5/2*x - 2, 2*x + 1, 11/5*x - 1/5}
7 5 {4*x - 11, 3*x - 4, 10/3*x - 19/3, 14/5*x - 13/5, 5/2*x - 1/2}
PROG
(PARI) { for (n = 1, #p = primes(68), print1 (#Set(vector(n-1, i, polinterpolate([i, n], [p[i], p[n]])))", "); ); }
CROSSREFS
Cf. A375420.
Sequence in context: A361645 A319409 A122543 * A334149 A369452 A118003
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Aug 14 2024
STATUS
approved