login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375383
Triangle read by rows: The matrix inverse of the row reversed Euler table A026820.
1
1, -2, 1, 1, -2, 1, 0, 2, -3, 1, 0, -2, 4, -3, 1, 0, 2, -4, 5, -4, 1, 0, -2, 4, -7, 8, -4, 1, 0, 3, -6, 12, -15, 10, -5, 1, 0, -6, 12, -23, 28, -20, 13, -5, 1, 0, 13, -26, 48, -57, 42, -31, 16, -6, 1, 0, -30, 60, -110, 130, -98, 76, -43, 20, -6, 1
OFFSET
1,2
EXAMPLE
Triangle starts:
[1] [ 1]
[2] [-2, 1]
[3] [ 1, -2, 1]
[4] [ 0, 2, -3, 1]
[5] [ 0, -2, 4, -3, 1]
[6] [ 0, 2, -4, 5, -4, 1]
[7] [ 0, -2, 4, -7, 8, -4, 1]
[8] [ 0, 3, -6, 12, -15, 10, -5, 1]
[9] [ 0, -6, 12, -23, 28, -20, 13, -5, 1]
MAPLE
with(LinearAlgebra):
A058400 := Matrix(10, (n, k) -> ifelse(k <= n, A026820(n, n - k + 1), 0)):
MatrixInverse(A058400);
CROSSREFS
Cf. A026820, A008284, A058400, A375382 (row sums of abs(term)).
Sequence in context: A366835 A364312 A307016 * A143158 A336708 A308424
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Aug 13 2024
STATUS
approved