login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375286
a(n) = f(1) + f(2) + ... + f(n), where f(n) = (-2)^Omega(n) = A165872(n).
0
1, -1, -3, 1, -1, 3, 1, -7, -3, 1, -1, -9, -11, -7, -3, 13, 11, 3, 1, -7, -3, 1, -1, 15, 19, 23, 15, 7, 5, -3, -5, -37, -33, -29, -25, -9, -11, -7, -3, 13, 11, 3, 1, -7, -15, -11, -13, -45, -41, -49, -45, -53, -55, -39, -35, -19, -15, -11, -13, 3, 1, 5, -3, 61
OFFSET
1,3
LINKS
Daniel R. Johnston, Nicol Leong, and Sebastian Tudzi, New bounds and progress towards a conjecture on the summatory function of (-2)^{Ω(n)}, arXiv:2408.04143 [math.NT], 2024.
Michael J. Mossinghoff and Timothy S. Trudgian, Oscillations in weighted arithmetic sums, arXiv:2007.14537 [math.NT], 2020.
Zhi-Wei Sun, On a pair of zeta functions, arXiv:1204.6689 [math.NT], 2012.
FORMULA
Johnston, Leong, & Tudzi prove that |a(n)| < 2260n. Sun conjectures that |a(n)| < n for n >= 3078. Mossinghoff & Trudgian verify this to 2.5 * 10^14.
Because of powers of two, |a(n)| >= n/2 infinitely often.
PROG
(PARI) s=0; vector(60, n, s+=(-2)^bigomega(n))
CROSSREFS
Partial sums of A165872.
Sequence in context: A355899 A341050 A122506 * A010274 A137728 A054398
KEYWORD
sign
AUTHOR
STATUS
approved