login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375253
Expansion of (1 - 2*x + 2*x^2)/(1 - 2*x - 3*x^2)^(7/2).
3
1, 5, 30, 140, 630, 2646, 10710, 41910, 159885, 597025, 2190188, 7914270, 28230020, 99567300, 347720040, 1203777072, 4135047615, 14105322315, 47813634330, 161154659820, 540353553894, 1803226621350, 5991410183850, 19827295283250, 65371101643575
OFFSET
0,2
FORMULA
a(n) = (binomial(n+4,3)/4) * Sum_{k=0..floor(n/2)} binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = (binomial(n+4,3)/4) * A005717(n+1).
a(n) = ((n+4)/(n*(n+2))) * ((2*n+1)*a(n-1) + 3*(n+3)*a(n-2)).
a(n) = (1 + n)*(2 + n)*(3 + n)*(4 + n)*hypergeom([(1-n)/2, -n/2], [2], 4)/24. - Stefano Spezia, Aug 07 2024
MATHEMATICA
a[n_]:=(1+n)(2+n)(3+n)(4+n)Hypergeometric2F1[(1-n)/2, -n/2, 2, 4]/24; Array[a, 25, 0] (* Stefano Spezia, Aug 07 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec((1-2*x+2*x^2)/(1-2*x-3*x^2)^(7/2))
CROSSREFS
Column k=4 of A091869 (with a different offset).
Sequence in context: A358543 A282078 A080951 * A359094 A255052 A282086
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 07 2024
STATUS
approved