login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375251
Denominators of the polynomials A375252 (polynomial part of the partition function restricted to partitions of the integer x with parts in (1,2,...,n)).
2
1, 4, 72, 288, 86400, 1036800, 152409600, 1219276800, 438939648000, 26336378880000, 6373403688960000, 229442532802560000, 2714305163054284800000, 228001633696559923200000, 3420024505448398848000000, 164161176261523144704000000, 759081279033283021111296000000
OFFSET
1,2
FORMULA
(Sum_{k=0..n-1} A375252(n, k)*x^k) / a(n) = W1([n], x), where W1([n], x) denotes the first Sylvester wave restricted to parts in [n].
a(n) = denominator(W(n)) where W(n) = [t^(-1)] exp(t*x)/Product_{k=1..n}(1 - exp(-t*k)).
a(n) = A375250(n)*n!*(n - 1)!.
MAPLE
read(PARTITIONS): # See the Sills & Zeilberger paper cited in A375252.
seq(denom(op(pmnPC(n, x)[1])), n = 1..17);
# Or, standalone:
W := proc(n) local k; exp(t*x)/mul(1 - exp(-t*k), k=1..n);
expand(series(%, t, n+1)); coeff(%, t, -1) end:
a := n -> denom(W(n)): seq(a(n), n = 1..17);
CROSSREFS
Cf. A375252 (numerators), A375250.
Sequence in context: A077112 A203537 A095385 * A071683 A192826 A190398
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Aug 07 2024
STATUS
approved