login
A375091
First element p of sexy prime pairs (p,p+6) whose concatenation is also prime.
0
11, 13, 17, 31, 83, 97, 101, 151, 157, 167, 223, 227, 233, 251, 257, 263, 271, 331, 353, 373, 433, 461, 541, 601, 653, 677, 727, 821, 823, 877, 941, 971, 1013, 1033, 1181, 1187, 1223, 1367, 1447, 1453, 1657, 1693, 1741, 1861, 1973, 1993, 1997, 2207, 2281, 2333, 2393, 2441
OFFSET
1,1
EXAMPLE
11 is the first term, since (11,17) are sexy primes and 1117 is also prime.
The second term is 13, since 1319 is prime.
MAPLE
q:= p-> andmap(isprime, [p, p+6, parse(cat(p, p+6))]):
select(q, [$2..3000])[]; # Alois P. Heinz, Aug 02 2024
MATHEMATICA
Select[Prime[Range[370]], PrimeQ[#+6] && PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[#+6]]]] &] (* Stefano Spezia, Aug 03 2024 *)
PROG
(Python)
from sympy import isprime
def ok(n): return isprime(n) and isprime(n+6) and isprime(int(str(n)+str(n+6)))
print([k for k in range(2500) if ok(k)]) # Michael S. Branicky, Aug 01 2024
(PARI) isp(p) = isprime(p+6) && isprime(eval(concat(Str(p), Str(p+6))))
select(isp, primes(100)) \\ Michel Marcus, Aug 02 2024
CROSSREFS
Intersection of A023201 and A032621.
Sequence in context: A090236 A240623 A240624 * A032502 A209871 A347702
KEYWORD
nonn,base
AUTHOR
James S. DeArmon, Jul 29 2024
STATUS
approved