login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374622
Maximum number of vertices of a chordal ring mixed graph CRM(N,c) with diameter n.
0
8, 10, 18, 16, 32, 34, 50, 44, 72, 74, 98, 88, 128, 130, 162, 148, 200, 202, 242, 224, 288, 290, 338, 316, 392, 394, 450, 424, 512, 514, 578, 548, 648, 650, 722, 688, 800, 802, 882, 844, 968, 970, 1058, 1016, 1152, 1154
OFFSET
3,1
LINKS
C. Dalfó, G. Erskine, G. Exoo, M. A. Fiol, and J. Tuite, On bipartite (1, 1, k)-mixed graphs, (2024).
FORMULA
If n is odd, a(n) = (n+1)^2/2.
Conjecture: If n is even, n=0 mod 4, a(n) = n^2/2+2;
If n (> 2) is even, n=2 mod 4, a(n) = n*(n/2 - 1) + 4.
Conjectured g.f.: 2*(1 + x + 2*x^2 + x^3 + 2*x^4 - 3*x^5 + 4*x^6 - x^7 + x^8)/((1 - x)^3*(1 + x + x^2 + x^3)^2). - Stefano Spezia, Jul 14 2024
EXAMPLE
For n = 9, the maximum number of vertices a(9) = 50 is attained by the chordal ring mixed graph CRM(50,9).
CROSSREFS
Cf. A371396.
Sequence in context: A121846 A059094 A302166 * A287270 A299988 A143617
KEYWORD
nonn
AUTHOR
Miquel A. Fiol, Jul 14 2024
STATUS
approved