

A059094


Numbers whose sum of digits is a cube.


4



1, 8, 10, 17, 26, 35, 44, 53, 62, 71, 80, 100, 107, 116, 125, 134, 143, 152, 161, 170, 206, 215, 224, 233, 242, 251, 260, 305, 314, 323, 332, 341, 350, 404, 413, 422, 431, 440, 503, 512, 521, 530, 602, 611, 620, 701, 710, 800, 999, 1000, 1007, 1016, 1025
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The first occurrence of a new cube value in sequence 1, 8, 27, 64, ... occurs at a great distance from each previous value.
Consecutive terms differ by 1 iff they are of the form 999..999 and 1000..000 provided the number of 9s is 3*(u^3): that is 999 (length 3) whose digit sum is 27=3^3; 99..99 (length 24) whose digitsum is 216=6^3; 99.999 (length 81) whose digitsum is 729=9^3.  Carmine Suriano Mar 31 2014


LINKS

Carmine Suriano, Table of n, a(n) for n = 1..390


EXAMPLE

999 has digit sum 9 + 9 + 9 = 27 = 3^3, so 999 is a term.


PROG

(PARI) isok(nn) = ispower(sumdigits(n), 3); \\ Michel Marcus, Jun 06 2014


CROSSREFS

Cf. A007953.
Sequence in context: A056020 A049510 A121846 * A302166 A287270 A299988
Adjacent sequences: A059091 A059092 A059093 * A059095 A059096 A059097


KEYWORD

easy,nonn,base,changed


AUTHOR

Enoch Haga, Feb 13 2001


STATUS

approved



