login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A(x) = x*(1 + A(x)^2) + x^2*(1 + A(x)^2)^2.
1

%I #15 Jul 19 2024 06:32:46

%S 1,1,1,4,7,17,47,112,302,819,2187,6072,16863,47099,133289,378352,

%T 1080522,3104302,8950670,25920104,75342011,219680831,642547985,

%U 1884571240,5541269802,16331880595,48239191795,142769840280,423339407025,1257470646765,3741247990455,11148083590080

%N Expansion of g.f. A(x) satisfying A(x) = x*(1 + A(x)^2) + x^2*(1 + A(x)^2)^2.

%H Paul D. Hanna, <a href="/A374563/b374563.txt">Table of n, a(n) for n = 1..600</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) A(x) = x*(1 + A(x)^2) + x^2*(1 + A(x)^2)^2.

%F (2) A(x) = Series_Reversion( (sqrt(1 + 4*x) - 1)/(2*(1 + x^2)) ).

%F (3) A(x)^2 = (sqrt(1 + 4*A(x)) - 1 - 2*x)/(2*x).

%F (4) C(A(x)) = x + x*A(x)^2, where C(x) = x - C(x)^2 is a g.f. of the Catalan numbers (A000108).

%F a(n) ~ sqrt((1 + s^2)/(2*r*s*(1 + r*(2 + 6*s^2)))) / (2*sqrt(Pi) * n^(3/2) * r^n), where r = 0.3201411821955004503644495595974372984436524828585... and s = 0.7723300090737596252395061122641790356344153664573... are positive real roots of the system of equations r*(1 + s^2)*(1 + r + r*s^2) = s, 2*r*s*(1 + 2*r + 2*r*s^2) = 1. - _Vaclav Kotesovec_, Jul 19 2024

%e G.f.: A(x) = x + x^2 + x^3 + 4*x^4 + 7*x^5 + 17*x^6 + 47*x^7 + 112*x^8 + 302*x^9 + 819*x^10 + 2187*x^11 + 6072*x^12 + ...

%e RELATED SERIES.

%e A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 23*x^6 + 56*x^7 + 158*x^8 + 408*x^9 + 1107*x^10 + 3080*x^11 + 8459*x^12 + ...

%e Let B(x) be the series reversion of A(x), B(A(x)) = x, then

%e B(x) = x - x^2 + x^3 - 4*x^4 + 13*x^5 - 38*x^6 + 119*x^7 - 391*x^8 + ...

%e and B(x) = (sqrt(1 + 4*x) - 1)/(2*(1 + x^2)).

%o (PARI) {a(n) = my(A = serreverse( (sqrt(1 + 4*x +x^2*O(x^n)) - 1)/(2*(1 + x^2)) )); polcoeff(A,n)}

%o for(n=1,32, print1(a(n),", "))

%Y Cf. A000108.

%K nonn

%O 1,4

%A _Paul D. Hanna_, Jul 12 2024