login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374563
Expansion of g.f. A(x) satisfying A(x) = x*(1 + A(x)^2) + x^2*(1 + A(x)^2)^2.
1
1, 1, 1, 4, 7, 17, 47, 112, 302, 819, 2187, 6072, 16863, 47099, 133289, 378352, 1080522, 3104302, 8950670, 25920104, 75342011, 219680831, 642547985, 1884571240, 5541269802, 16331880595, 48239191795, 142769840280, 423339407025, 1257470646765, 3741247990455, 11148083590080
OFFSET
1,4
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A(x) = x*(1 + A(x)^2) + x^2*(1 + A(x)^2)^2.
(2) A(x) = Series_Reversion( (sqrt(1 + 4*x) - 1)/(2*(1 + x^2)) ).
(3) A(x)^2 = (sqrt(1 + 4*A(x)) - 1 - 2*x)/(2*x).
(4) C(A(x)) = x + x*A(x)^2, where C(x) = x - C(x)^2 is a g.f. of the Catalan numbers (A000108).
a(n) ~ sqrt((1 + s^2)/(2*r*s*(1 + r*(2 + 6*s^2)))) / (2*sqrt(Pi) * n^(3/2) * r^n), where r = 0.3201411821955004503644495595974372984436524828585... and s = 0.7723300090737596252395061122641790356344153664573... are positive real roots of the system of equations r*(1 + s^2)*(1 + r + r*s^2) = s, 2*r*s*(1 + 2*r + 2*r*s^2) = 1. - Vaclav Kotesovec, Jul 19 2024
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + 4*x^4 + 7*x^5 + 17*x^6 + 47*x^7 + 112*x^8 + 302*x^9 + 819*x^10 + 2187*x^11 + 6072*x^12 + ...
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 23*x^6 + 56*x^7 + 158*x^8 + 408*x^9 + 1107*x^10 + 3080*x^11 + 8459*x^12 + ...
Let B(x) be the series reversion of A(x), B(A(x)) = x, then
B(x) = x - x^2 + x^3 - 4*x^4 + 13*x^5 - 38*x^6 + 119*x^7 - 391*x^8 + ...
and B(x) = (sqrt(1 + 4*x) - 1)/(2*(1 + x^2)).
PROG
(PARI) {a(n) = my(A = serreverse( (sqrt(1 + 4*x +x^2*O(x^n)) - 1)/(2*(1 + x^2)) )); polcoeff(A, n)}
for(n=1, 32, print1(a(n), ", "))
CROSSREFS
Cf. A000108.
Sequence in context: A049944 A098091 A319782 * A057450 A077274 A292850
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2024
STATUS
approved