|
|
A374389
|
|
a(n) is the minimal absolute value of the determinant of a nonsingular n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the first n-1 primes off-diagonal.
|
|
5
|
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
The offset is 2 because for n = 1 the unique symmetric Toeplitz matrix is singular.
|
|
LINKS
|
|
|
EXAMPLE
|
a(5) = 192:
[0, 5, 3, 2, 7]
[5, 0, 5, 3, 2]
[3, 5, 0, 5, 3]
[2, 3, 5, 0, 5]
[7, 2, 3, 5, 0]
|
|
MATHEMATICA
|
a[n_]:=Min[Select[Table[Abs[Det[ToeplitzMatrix[Join[{0}, Part[Permutations[Prime[Range[n-1]]], i]]]]], {i, (n-1)!}], Positive]]; Array[a, 8, 2]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|