|
|
A374068
|
|
a(n) is the permanent of the symmetric Toeplitz matrix of order n whose element (i,j) equals the |i-j|-th prime or 0 if i = j.
|
|
9
|
|
|
1, 0, 4, 24, 529, 16100, 919037, 75568846, 9196890092, 1491628025318, 317579623173729, 86997150829931700, 29703399282858184713, 12512837775355494800500, 6397110844644502402189404, 3875565057688532269985283868, 2747710211567246171588232074225, 2265312860218073375019946448731300
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the first n-1 primes off-diagonal. - Stefano Spezia, Jul 06 2024
|
|
LINKS
|
|
|
EXAMPLE
|
a(4) = 529:
[0, 2, 3, 5]
[2, 0, 2, 3]
[3, 2, 0, 2]
[5, 3, 2, 0]
|
|
MATHEMATICA
|
a[n_]:=Permanent[Table[If[i == j, 0, Prime[Abs[i - j]]], {i, 1, n}, {j, 1, n}]]; Join[{1}, Array[a, 17]]
|
|
PROG
|
(PARI) a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 0, prime(abs(i-j))))); \\ Michel Marcus, Jun 28 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|