Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jul 16 2024 15:57:56
%S 2,23,-1,223,22,-1,2237,235,27,-1,22273,2227,222,132,-1,222323,22223,
%T 2222,225,32,-1,2222273,222223,22222,2223,252,729,-1,22222223,2222557,
%U 222227,22225,2322,352,192,-1,222222227,22222237,2222222,222225,22232,2232,2352,2112,-1,2222222377,222222223
%N Array read by downward antidiagonals: T(k,n) is the least number that has k prime factors (counted with multiplicity) and is the concatenation of n primes, or -1 if there is no such number.
%D T(k,1) = -1 for k > 1.
%e Array starts
%e 2 23 223 2237 22273 ...
%e -1 22 235 2227 22223 ...
%e -1 27 222 2222 22222 ...
%e -1 132 225 2223 22225 ...
%e -1 32 252 2322 22232 ...
%e A(4,3) = 225 because 225 = 3^2 * 5^2 is the product of 4 primes (with multiplicity) and is the concatenation of the 3 primes 2, 2 and 5, and is the least number that works.
%p PD[1]:= [2,3,5,7]:
%p for i from 2 to 7 do PD[i]:= select(isprime,[seq(i,i=10^(i-1)+1..10^i-1,2)]) od:
%p dcat:= proc(a,b) 10^(ilog10(b)+1)*a+b end proc:
%p cp:= proc(m,n) option remember; local d,p,x,R;
%p if n = 1 then return PD[m] fi;
%p R:= {};
%p for d from 1 to m-n+1 do
%p R:= R union {seq(seq(dcat(p,x),p=PD[d]),x=procname(m-d,n-1))}
%p od;
%p R
%p end proc:
%p F:= proc(n,N)
%p local V,count,d,x,v;
%p if n = 1 then return <2,(-1)$(N-1)> fi;
%p V:= Vector(N); count:= 0;
%p for d from n while count < N do
%p for x in sort(convert(cp(d,n),list)) while count < N do
%p v:= numtheory:-bigomega(x);
%p if v <= N and V[v] = 0 then
%p V[v]:= x; count:= count+1;
%p fi
%p od od:
%p V;
%p end proc:
%p N:= 10: M:= Matrix(N,N):
%p for i from 1 to N do
%p V:= F(i,N+1-i);
%p M[i,1..N+1-i]:= V;
%p od:
%p [seq(seq(M[t-i,i],i=1..t-1),t=2..N+1)];
%Y Cf. A001222, A069837 (first row), A374665 (main diagonal), A374669 (second column).
%K sign,base
%O 1,1
%A _Robert Israel_, Jul 14 2024