login
Numerator of A373158(n) / A108951(n), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).
5

%I #7 Jun 25 2024 20:18:57

%S 0,1,1,1,1,2,1,3,1,8,1,5,1,53,1,1,1,7,1,17,6,578,1,1,1,7508,1,107,1,

%T 19,1,5,193,127628,4,1,1,2424923,2503,3,1,109,1,1157,7,55773218,1,7,1,

%U 31,14181,15017,1,5,13,9,269436,1617423308,1,1,1,50140122533,37,3,167,1159,1,255257,18591073,121,1,1,1,1855184533703

%N Numerator of A373158(n) / A108951(n), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

%H Antti Karttunen, <a href="/A373986/b373986.txt">Table of n, a(n) for n = 1..4096</a>

%H <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a>

%F a(n) = A373158(n) / A373985(n) = A373158(n) / gcd(A108951(n), A373158(n)).

%o (PARI) A373986(n) = { my(f=factor(n),m=1,s=0); for(i=1, #f~, my(x=prod(i=1,primepi(f[i, 1]),prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); s/gcd(m,s); };

%o (PARI) A373986(n) = numerator(A373158(n)/A108951(n));

%Y Cf. A108951, A373158, A373985, A373987 (denominators), A373988 (rgs-transform).

%K nonn,frac

%O 1,6

%A _Antti Karttunen_, Jun 25 2024