login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373897
Number of (binary) heaps of length n-k whose element set equals [k], where k is chosen so as to maximize this number.
2
1, 0, 1, 1, 1, 3, 5, 9, 23, 55, 147, 386, 1004, 3128, 8113, 27456, 111574, 321433, 1150885, 4888981, 17841912, 80566518, 332583340, 1188065665, 5473922425, 21725492503, 99894124075, 548452369329, 2185136109838, 11339193480666, 59140581278157, 288137011157366
OFFSET
0,6
COMMENTS
These heaps may contain repeated elements. Their element sets are gap-free and contain 1 (if nonempty).
LINKS
Eric Weisstein's World of Mathematics, Heap
Wikipedia, Binary heap
FORMULA
a(n) = max({ A373451(n-j,j) : 0 <= j <= floor(n/2) }).
EXAMPLE
a(6) = 5: 2111, 2121, 2211, 2212, 2221 (with k=2).
a(7) = 9: 21111, 21211, 22111, 22112, 22121, 22122, 22211, 22212, 22221 (with k=2).
a(8) = 23: 31211, 32111, 32112, 32121, 32122, 32211, 32212, 32221, 32311, 32312, 32321, 33112, 33121, 33122, 33123, 33132, 33211, 33212, 33213, 33221, 33231, 33312, 33321 (with k=3).
(The examples use max-heaps.)
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
(g-> (f-> add(b(f, j)*b(n-1-f, j), j=1..k)
)(min(g-1, n-g/2)))(2^ilog2(n)))
end:
T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n, k-j), j=0..k):
a:= n-> max(seq(T(n-j, j), j=0..n/2)):
seq(a(n), n=0..31);
CROSSREFS
Antidiagonal maxima of A373451.
Cf. A373632.
Sequence in context: A146275 A089636 A241398 * A262483 A083366 A006722
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2024
STATUS
approved