login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373887
a(n) is the length of the longest arithmetic progression of semiprimes ending in the n-th semiprime.
4
1, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 4, 3, 3, 4, 3, 5, 3, 3, 4, 3, 3, 4, 3, 4, 5, 4, 4, 3, 3, 5, 3, 4, 4, 3, 3, 3, 4, 4, 3, 3, 3, 3, 3, 5, 3, 3, 4, 5, 4, 4, 3, 4, 3, 4, 4, 4, 4, 3, 4, 5, 4, 4, 3, 4, 4, 4, 5, 3, 5, 6, 4, 4, 4, 4, 4, 4, 5, 4, 5, 5, 3, 3, 4, 4, 5, 5, 4, 4, 4, 4, 4, 5, 4, 5
OFFSET
1,2
COMMENTS
a(n) is the greatest k such that there exists d > 0 such that A001358(n) - j*d is in A001358 for j = 0 .. k-1.
The first appearance of m in this sequence is at n where A001358(n) = A096003(m).
Conjectures: a(n) >= 3 for n >= 16.
Limit_{n -> oo} a(n) = oo.
If A001358(n) is divisible by A000040(m), then a(n) >= A373888(m). In particular, the conjectures above are implied by the corresponding conjectures for A373888. - Robert Israel, Aug 19 2024
LINKS
EXAMPLE
a(5) = 3 because the 5th semiprime is A001358(5) = 14 and there is an arithmetic progression of 3 semiprimes ending in 14, namely 4, 9, 14, and no such arithmetic progression of 4 semiprimes.
MAPLE
S:= select(t -> numtheory:-bigomega(t)=2, [$1..10^5]):
f:= proc(n) local s, i, m, d, j;
m:= 1;
s:= S[n];
for i from n-1 to 1 by -1 do
d:= s - S[i];
if s - m*d < 4 then return m fi;
for j from 2 while ListTools:-BinarySearch(S, s-j*d) <> 0 do od;
m:= max(m, j);
od;
m;
end proc:
map(f, [$1..100]);
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Aug 10 2024
STATUS
approved