login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373779
a(n) is the least prime p such that the digit reversal of n*p is also prime, or -1 if no such prime exists.
2
2, 7, -1, 5, 7, -1, 2, 2, -1, 2, -1, -1, 7, 5, -1, 2, 2, -1, 2, 7, -1, -1, 17, -1, 2, 5, -1, 5, 5, -1, 23, 5, -1, 5, 2, -1, 2, 2, -1, 5, 19, -1, 7, -1, -1, 2, 17, -1, 2, 7, -1, 2, 2, -1, -1, 2, -1, 13, 2, -1, 5, 2, -1, 2, 2, -1, 2, 2, -1, 2, 2, -1, 2, 5, -1, 2, -1, -1, 5, 2, -1, 2, 2, -1, 2, 2
OFFSET
1,1
COMMENTS
a(n) = -1 if n is divisible by 3 or 11.
a(10*n) = a(n).
LINKS
EXAMPLE
a(5) = 7 because 7 is prime and the reversal of 5 * 7 = 35 is 53 which is prime, while the reversals of 5 * 2 = 10, 5 * 3 = 15 and 5 * 5 = 25 are not prime.
MAPLE
rev:= proc(n) local L, i;
L:= convert(n, base, 10);
add(L[-i]*10^(i-1), i=1..nops(L))
end proc:
f:= proc(n) local p;
if n mod 3 = 0 or n mod 11 = 0 then return -1 fi;
p:= 1:
do
p:= nextprime(p);
if isprime(rev(n*p)) then return p fi
od;
end proc:
map(f, [$1..100]);
MATHEMATICA
A373779[n_] := If[Divisible[n, 3] || Divisible[n, 11], -1, Block[{i = 0}, While[!PrimeQ[IntegerReverse[n*Prime[++i]]]]; Prime[i]]];
Array[A373779, 100] (* Paolo Xausa, Jun 24 2024 *)
CROSSREFS
Cf. A004086.
Sequence in context: A346253 A351953 A371838 * A215941 A156194 A271855
KEYWORD
sign,base,look
AUTHOR
Robert Israel, Jun 18 2024
STATUS
approved