login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373536
Number of ways to form a direct sum decomposition of the vector space GF(2)^n and then choose a basis for each subspace in the decomposition.
0
1, 1, 9, 364, 61320, 41747328, 113420740608, 1223445790457856, 52307167449899335680, 8861896666997422628536320, 5951934931285476447488997064704, 15857359709817958217841735837828513792, 167702614892018104786663957623269078052372480, 7044769706183185876455816992603242619680927682396160
OFFSET
0,3
FORMULA
a(n) = A000262(n)*A053601(n).
Sum_{n>=0} a(n)*x^n/A002884(n) = exp(x/(1-x)).
MATHEMATICA
nn = 13; B[n_] := Product[q^n - q^i, {i, 0, n - 1}] /. q -> 2;
e[x_] := Sum[x^n/B[n], {n, 0, nn}]; f[x_] := Sum[x^n, {n, 0, nn}];
Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[f[x] - 1], {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jun 08 2024
STATUS
approved