|
|
A132593
|
|
Nonnegative integer solutions X to the equation: X(X + 1) - 10*Y^2 = 0.
|
|
4
|
|
|
0, 9, 360, 13689, 519840, 19740249, 749609640, 28465426089, 1080936581760, 41047124680809, 1558709801289000, 59189925324301209, 2247658452522156960, 85351831270517663289, 3241121929827149048040, 123077281502161146162249
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
Kenneth M. Wilke, Problem 269, Crux Mathematicorum, Vol. 3, No. 7 (1977), p. 190; Solution to Problem 269 by Lindsay Reynolds, W. J. Blundon and M. S. Klamkin, ibid., Vol. 4, No. 3 (1978), pp. 79-82; Comment by the MaScoT Problems Group, ibid., Vol. 6, No. 2 (1980), pp. 44-46.
|
|
FORMULA
|
a(0)=0, a(1)=9 and a(n) = 38*a(n-1) - a(n-2) + 18.
a(n) = -1/2+(1/4)*(19-6*sqrt(10))^n+(1/4)*(19+6*sqrt(10))^n. - Paolo P. Lava, Jul 11 2008
G.f.: -9*x*(x+1)/((x-1)*(x^2-38*x+1)). - Colin Barker, Oct 24 2012
sqrt(a(n)+1) - sqrt(n) = (sqrt(10)-3)^n (Wilke, 1977).
a(n) = ((Sum_{k=0..n} binomial(2*n, 2*k) * 10^(n-k) * 9*k)- 1)/2 (Klamkin, 1978).
a(n) = sinh(n*log(sqrt(10)+3))^2 (MaScoT Problems Group, 1980). (End)
|
|
MATHEMATICA
|
LinearRecurrence[{39, -39, 1}, {0, 9, 360}, 30] (* Harvey P. Dale, Jun 01 2014 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|