login
A373504
Triangular array: row n gives the coefficients T(n,k) of powers x^(2k) in the series expansion of ((b^n + b^(-n))/2)^2, where b = x + sqrt(x^2 + 1).
0
1, 1, 1, 1, 4, 4, 1, 9, 24, 16, 1, 16, 80, 128, 64, 1, 25, 200, 560, 640, 256, 1, 36, 420, 1792, 3456, 3072, 1024, 1, 49, 784, 4704, 13440, 19712, 14336, 4096, 1, 64, 1344, 10752, 42240, 90112, 106496, 65536, 16384, 1, 81, 2160, 22176, 114048, 329472, 559104, 552960, 294912, 65536
OFFSET
0,5
COMMENTS
Related to Chebyshev polynomials of the first kind; see A123588.
FORMULA
T(n, k) = if (k=0) then 1, otherwise 4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)). - Detlef Meya, Aug 11 2024
EXAMPLE
First 8 rows:
1
1 1
1 4 4
1 9 24 16
1 16 80 128 64
1 25 200 560 640 256
1 36 420 1792 3456 3072 1024
1 49 784 4704 13440 19612 14336 4096
The 4th polynomial is 1 + 9 x^2 + 24 x^4 + 16 x^6.
MAPLE
p:= proc(n) option remember; (b-> series(
((b^n+b^(-n))/2)^2, x, 2*n+1))(x+sqrt(x^2+1))
end:
T:= (n, k)-> coeff(p(n), x, 2*k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Aug 03 2024
MATHEMATICA
t[n_] := ((x + Sqrt[x^2 + 1])^n + (x + Sqrt[x^2 + 1])^(-n))/2
u = Expand[Table[FullSimplify[Expand[t[n]]], {n, 0, 10}]^2]
v = Column[CoefficientList[u, x^2]] (* array *)
Flatten[v] (* sequence *)
T[n_, k_] := If[k==0, 1, 4^(k - 1)*(2*Binomial[n + k, 2*k] - Binomial[n + k -1, 2*k -1])]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, Aug 11 2024 *)
CROSSREFS
Cf. A000012 (col 0), A000290 (col 1), A002415 ((1/4)*col(2)), A112742 (col 2), A000302 (T(n,n)), A123588, A008310.
Row sums give A055997(n+1).
Triangle without column 0 gives A334009.
Sequence in context: A371401 A080721 A123588 * A289710 A243594 A360707
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Aug 03 2024
STATUS
approved