login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373208
Decimal expansion of Product_{k>=1} f(2*k)^2/(f(2*k-1) * f(2*k+1)), where f(k) = k^(1/k^2).
1
1, 2, 2, 4, 6, 2, 3, 1, 4, 0, 5, 8, 5, 1, 1, 1, 1, 4, 5, 5, 9, 5, 2, 5, 7, 0, 4, 5, 1, 6, 2, 1, 5, 8, 9, 4, 7, 2, 0, 1, 0, 1, 8, 4, 4, 8, 3, 2, 0, 3, 2, 1, 5, 1, 9, 8, 3, 1, 0, 8, 8, 2, 7, 8, 9, 9, 0, 7, 0, 6, 9, 3, 3, 4, 7, 9, 0, 1, 1, 6, 5, 5, 6, 5, 4, 0, 0, 4, 3, 2, 5, 0, 6, 1, 3, 1, 8, 4, 4, 2, 2, 7, 3, 8, 0
OFFSET
1,2
LINKS
Dirk Huylebrouck, Generalizing Wallis' formula, The American Mathematical Monthly, Vol. 122, No. 4 (2015), pp. 371-372; alternative link; arXiv preprint, arXiv:1402.6577 [math.HO], 2014.
Eric Weisstein's World of Mathematics, Dirichlet Eta Function.
FORMULA
Equals exp(2*eta'(2)) = exp(2*A210593), where eta is the Dirichlet eta function.
Equals (4*Pi*exp(gamma)/A^12)^zeta(2), where gamma is Euler's constant (A001620) and A is the Glaisher-Kinkelin constant (A074962).
EXAMPLE
(2^(1/2^2)/1^1^2) * (2^(1/2^2)/3^(1/3^2)) * (4^(1/4^2)/3^(1/3^2)) * (4^(1/4^2)/5^(1/5^2)) * ...
1.22462314058511114559525704516215894720101844832032...
MATHEMATICA
RealDigits[(4 * Pi * Exp[EulerGamma] / Glaisher^12)^Zeta[2], 10, 120][[1]]
PROG
(PARI) (4 * Pi * exp(Euler - 1 + 12*zeta'(-1)))^zeta(2)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, May 28 2024
STATUS
approved