Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 23 2024 16:14:15
%S 1,1,1,2,1,1,5,1,3,1,15,1,7,6,1,52,1,15,25,10,1,203,1,31,90,65,15,1,
%T 877,1,63,301,350,140,21,1,4140,1,127,966,1701,1050,266,28,1,21147,1,
%U 255,3025,7770,6951,2646,462,36,1,115975,1,511,9330,34105,42525,22827,5880,750,45,1
%N Triangle read by rows: the exponential almost-Riordan array ( exp(exp(x)-1) | exp(x), exp(x)-1 ).
%H Y. Alp and E. G. Kocer, <a href="https://doi.org/10.1007/s00025-024-02193-5">Exponential Almost-Riordan Arrays</a>, Results Math 79, 173 (2024). See page 14.
%F T(n,0) = n! * [x^n] exp(exp(x)-1); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] exp(x)*(exp(x)-1)^(k-1).
%F T(n,2) = A000225(n-1) for n > 1.
%e The triangle begins:
%e 1;
%e 1, 1;
%e 2, 1, 1;
%e 5, 1, 3, 1;
%e 15, 1, 7, 6, 1;
%e 52, 1, 15, 25, 10, 1;
%e 203, 1, 31, 90, 65, 15, 1;
%e ...
%t T[n_,0]:=n!SeriesCoefficient[Exp[Exp[x]-1],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[Exp[x](Exp[x]-1)^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten
%Y Cf. A000012 (k=1), A000225, A000392 (k=3), A000453 (k=4), A000481 (k=5), A000770 (k=6), A000771 (k=7), A049394 (k=8), A049435 (k=10), A049447 (k=9).
%Y Triangle A008277 with 1st column A000110.
%K nonn,tabl
%O 0,4
%A _Stefano Spezia_, May 26 2024