OFFSET
0,4
LINKS
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 14.
FORMULA
T(n,0) = n! * [x^n] exp(exp(x)-1); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] exp(x)*(exp(x)-1)^(k-1).
T(n,2) = A000225(n-1) for n > 1.
EXAMPLE
The triangle begins:
1;
1, 1;
2, 1, 1;
5, 1, 3, 1;
15, 1, 7, 6, 1;
52, 1, 15, 25, 10, 1;
203, 1, 31, 90, 65, 15, 1;
...
MATHEMATICA
T[n_, 0]:=n!SeriesCoefficient[Exp[Exp[x]-1], {x, 0, n}]; T[n_, k_]:=(n-1)!/(k-1)!SeriesCoefficient[Exp[x](Exp[x]-1)^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, May 26 2024
STATUS
approved