%I #6 May 27 2024 22:59:09
%S 0,100,111,124,139,200,222,248,300,333,400,421,444,469,500,555,600,
%T 666,700,777,800,842,888,900,931,964,999,10000,10001,10002,10003,
%U 10004,10005,10006,10007,10008,10009,10101,10112,10125,10204,10226,10309,11000,11110,11111,11112,11113,11114,11115
%N Numbers k such that the Hankel matrix formed using the digits of k is singular.
%C All terms have an odd number of digits.
%C If k is a term and not divisible by 10, then A004086(k) is a term.
%H Robert Israel, <a href="/A373066/b373066.txt">Table of n, a(n) for n = 1..10000</a>
%e a(5) = 139 is a term because the Hankel matrix
%e [ 1 3 ]
%e [ 3 9 ]
%e formed from the digits 1,3,9 has determinant 0.
%p N:= 100: # for a(1) to a(N)
%p with(LinearAlgebra):
%p R:= 0: count:= 1:
%p for d from 1 by 2 while count < N do
%p for x from 10^(d-1) to 10^d-1 while count < N do
%p L:= convert(x,base,10);
%p if Determinant(HankelMatrix(L)) = 0 then
%p R:= R,x;
%p count:= count+1;
%p fi
%p od od:
%p R;
%Y Cf. A004086.
%K nonn,base
%O 1,2
%A _Robert Israel_, May 21 2024