login
A373066
Numbers k such that the Hankel matrix formed using the digits of k is singular.
2
0, 100, 111, 124, 139, 200, 222, 248, 300, 333, 400, 421, 444, 469, 500, 555, 600, 666, 700, 777, 800, 842, 888, 900, 931, 964, 999, 10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007, 10008, 10009, 10101, 10112, 10125, 10204, 10226, 10309, 11000, 11110, 11111, 11112, 11113, 11114, 11115
OFFSET
1,2
COMMENTS
All terms have an odd number of digits.
If k is a term and not divisible by 10, then A004086(k) is a term.
LINKS
EXAMPLE
a(5) = 139 is a term because the Hankel matrix
[ 1 3 ]
[ 3 9 ]
formed from the digits 1,3,9 has determinant 0.
MAPLE
N:= 100: # for a(1) to a(N)
with(LinearAlgebra):
R:= 0: count:= 1:
for d from 1 by 2 while count < N do
for x from 10^(d-1) to 10^d-1 while count < N do
L:= convert(x, base, 10);
if Determinant(HankelMatrix(L)) = 0 then
R:= R, x;
count:= count+1;
fi
od od:
R;
CROSSREFS
Cf. A004086.
Sequence in context: A281193 A285776 A226032 * A286699 A171222 A286739
KEYWORD
nonn,base
AUTHOR
Robert Israel, May 21 2024
STATUS
approved