login
A372800
Smallest prime p such that the multiplicative order of 16 modulo p is 2*n, or 0 if no such prime exists.
3
3, 5, 31, 17, 151, 109, 631, 113, 127, 1181, 331, 433, 13963, 1709, 3331, 1217, 2687, 397, 1103, 241, 2143, 1013, 18539, 1777, 2351, 4421, 2971, 673, 3191, 3061, 683, 257, 58147, 1429, 38431, 1657, 11471, 22573, 49999, 3121, 17467, 33013, 252583, 1321, 23671, 51797, 26227, 4513
OFFSET
1,1
COMMENTS
First prime p such that the expansion of 1/p has period (p-1)/(2*n) in base 16. Also the first prime p such that {k/p : 1 <= k <= p-1} has 2*n different cycles when written out in base 16.
Since ord(a^m,k) = ord(a,k)/gcd(m,ord(a,k)) for gcd(a,k) = 1, we have that (p-1)/ord(16,p) = ((p-1)/ord(2,p)) * gcd(4,ord(2,p)) is always even. Here ord(a,k) is the multiplicative order of a modulo k.
EXAMPLE
In the following examples let () denote the reptend. The prime numbers themselves and the fractions are written out in decimal.
The base-16 expansion of 1/3 is 0.(5), so the reptend has length 1 = (3-1)/2. Also, the base-16 expansions of 1/3 = 0.(5) and 2/3 = 0.(A) have two cycles 5 and A. 3 is the smallest such prime, so a(1) = 3.
The base-16 expansion of 1/5 is 0.(3), so the reptend has length 1 = (5-1)/4. Also, the base-16 expansions of 1/5 = 0.(3), 2/5 = (0.6), 3/5 = 0.(9) and 4/5 = 0.(C) have four cycles 3, 6, 9 and A. 5 is the smallest such prime, so a(2) = 5.
The base-16 expansion of 1/31 is 0.(08421), so the reptend has length 5 = (31-1)/6. Also, the base-16 expansions of 1/31, 2/31, ..., 30/31 have six cycles 08421, 18C63, 294A5, 39CE7, 5AD6B and 7BDEF. 31 is the smallest such prime, so a(3) = 31.
PROG
(PARI) a(n, {base=16}) = forprime(p=2, oo, if((base%p) && znorder(Mod(base, p)) == (p-1)/(n * if(issquare(base), 2, 1)), return(p)))
CROSSREFS
Cf. A372801.
Sequence in context: A162262 A151373 A189739 * A035410 A290487 A059940
KEYWORD
nonn
AUTHOR
Jianing Song, May 13 2024
STATUS
approved