login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372712
Numbers of minimal total dominating sets in the n-trapezohedral graph.
1
1, 16, 36, 36, 100, 121, 196, 324, 441, 729, 1089, 1681, 2704, 4225, 6889, 11236, 18496, 30976, 51984, 88209, 150544, 258064, 444889, 769129, 1334025, 2319529, 4040100, 7049025, 12313081, 21529600, 37675044, 65966884, 115562500, 202521361, 355020964, 622502500
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
Eric Weisstein's World of Mathematics, Trapezohedral Graph.
Index entries for linear recurrences with constant coefficients, signature (4,-3,-4,-1,14,-6,-5,-3,7,-4,3,0,0,-2,1).
FORMULA
a(n) = (A001608(n) + n)^2. - Christian Sievers, Jun 14 2024
From Eric W. Weisstein, Dec 12 2024: (Start)
a(n) = 4*a(n-1)-3*a(n-2)-4*a(n-3)-a(n-4)+14*a(n-5)-6*a(n-6)-5*a(n-7)-3*a(n-8)+7*a(n-9)-4*a(n-10)+3*a(n-11)-2*a(n-14)+a(n-15).
G.f.: -(x*(1+12*x-25*x^2-56*x^3+129*x^4-25*x^5-26*x^6-64*x^7+112*x^8-121*x^9+74*x^10-x^11-7*x^12-14*x^13+9*x^14)/((-1+x)^3*(-1-x+x^3)*(-1+2*x-x^2+x^3)*(-1+x^2+x^3)^2)). (End)
MATHEMATICA
Table[(RootSum[-1 - # + #^3 &, #^n &] + n)^2, {n, 20}] (* Eric W. Weisstein, Dec 12 2024 *)
LinearRecurrence[{4, -3, -4, -1, 14, -6, -5, -3, 7, -4, 3, 0, 0, -2, 1}, {1, 16, 36, 36, 100, 121, 196, 324, 441, 729, 1089, 1681, 2704, 4225, 6889}, 20] (* Eric W. Weisstein, Dec 12 2024 *)
CoefficientList[Series[-(1 + 12 x - 25 x^2 - 56 x^3 + 129 x^4 - 25 x^5 - 26 x^6 - 64 x^7 + 112 x^8 - 121 x^9 + 74 x^10 - x^11 - 7 x^12 - 14 x^13 + 9 x^14)/((-1 + x)^3 (-1 - x + x^3) (-1 + 2 x - x^2 + x^3) (-1 + x^2 + x^3)^2), {x, 0, 20}], x] (* Eric W. Weisstein, Dec 12 2024 *)
PROG
(PARI) a(n)=(polsym(x^3-x-1, n)[n+1]+n)^2 \\ Christian Sievers, Jun 14 2024
CROSSREFS
Cf. A001608.
Extended to a(1)-a(2) using the formula/recurrence.
Sequence in context: A070588 A250432 A183196 * A109287 A294155 A330869
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, May 11 2024
EXTENSIONS
a(13) and beyond from Christian Sievers, Jun 14 2024
a(1)-a(2) prepended by Eric W. Weisstein, Dec 12 2024
Offset corrected for above change
STATUS
approved