login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372396
Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n; triangle T(n,k), n>=0, k = 1..A000041(n), read by rows.
3
1, 1, 1, 2, 1, 4, 6, 1, 8, 14, 18, 24, 1, 16, 46, 54, 78, 96, 120, 1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720, 1, 64, 454, 486, 1066, 1374, 1536, 1902, 2286, 2616, 3000, 3216, 3720, 4320, 5040, 1, 128, 1394, 1458, 4718, 5658, 6144, 6902, 10554, 12090
OFFSET
0,4
COMMENTS
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
LINKS
Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
FORMULA
T(n,A000041(n)) = A000142(n).
T(n,A000041(n)-1) = A001563(n-1) for n>=2.
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 4, 6;
1, 8, 14, 18, 24;
1, 16, 46, 54, 78, 96, 120;
1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720;
...
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
b:= proc(n, i, l) `if`(n=0 or i=1, [h([l[], 1$n, 0])],
[b(n-i, min(n-i, i), [l[], i])[], b(n, i-1, l)[]])
end:
T:= n-> sort(b(n$2, []))[]:
seq(T(n), n=0..10);
CROSSREFS
Columns k=1-3 give: A000012, A011782 (for n>=2), A027649(n-2) (for n>=4).
Row sums give A372395.
Sequence in context: A220226 A181854 A109822 * A274292 A359670 A114192
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 29 2024
STATUS
approved