login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372219
Four-column table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that a < (a + b + c - d)/2 = 2n(n + 1) and b = c.
2
1, 12, 12, 17, 7, 30, 30, 43, 17, 56, 56, 81, 31, 90, 90, 131, 49, 132, 132, 193, 71, 182, 182, 267, 97, 240, 240, 353, 127, 306, 306, 451, 161, 380, 380, 561, 199, 462, 462, 683, 241, 552, 552, 817, 287, 650, 650, 963, 337, 756, 756, 1121, 391, 870, 870, 1291, 449, 992, 992, 1473
OFFSET
2,2
COMMENTS
A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
REFERENCES
Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
LINKS
Miguel-Ángel Pérez García-Ortega, Teorema 10.12
FORMULA
Row n = (a, b, c, d) = (2n^2 - 1, 4n^2 + 6n + 2, 4n^2 + 6n + 2, 6n^2 + 8n + 3).
EXAMPLE
Table begins:
n=1: 1, 12, 12, 17;
n=2: 7, 30, 30, 43;
n=3: 17, 56, 56, 81;
n=4: 31, 90, 90, 131;
n=5: 49, 132, 132, 193;
MATHEMATICA
cuaternas={}; Do[cuaternas=Join[cuaternas, {2n^2-1, 4n^2+6n+2, 4n^2+6n+2, 6n^2+8n+3}], {n, 1, 35}]; cuaternas
CROSSREFS
Cf. A372220, A056220 (first column), A002939 (second column), A126587 (fourth column).
Sequence in context: A376819 A334620 A061074 * A064161 A260528 A260526
KEYWORD
nonn,easy,tabf
STATUS
approved