The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A372199 a(n) = n! * F(n) * H(n), where F(n) is the n-th Fibonacci number and H(n) the n-th harmonic number. 1
1, 3, 22, 150, 1370, 14112, 169884, 2301264, 34903584, 584575200, 10728401760, 214047774720, 4614042856320, 106866549054720, 2646889430976000, 69814736722483200, 1953778728154982400, 57822137143219814400, 1804373878844546150400, 59213693468692224000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
E.g.f.: (5*x*log(-x^2 - x + 1) - sqrt(5)*(x - 2)*(log(2 - (sqrt(5) + 1)*x) -log((sqrt(5) - 1)*x + 2))) / (10*x*(x^2 + x - 1)).
a(n) = n! * A000045(n) * A001008(n) / A002805(n).
a(n) = A000045(n) * A000254(n) / A002805(n). - R. J. Mathar, Apr 24 2024
D-finite with recurrence 5*a(n) +5*(-2*n+1)*a(n-1) +(-5*n^2+10*n+1)*a(n-2) +(10*n^3-45*n^2+58*n-14)*a(n-3) +(5*n^4-40*n^3+109*n^2-108*n+16)*a(n-4) +2*(n-4)^3*a(n-5) +(n-4)^2*(n-5)^2*a(n-6)=0. - R. J. Mathar, Apr 24 2024
MAPLE
H := proc(n)
add(1/i, i=1..n) ;
end proc:
A372199 := proc(n)
n!*A000045(n)*H(n) ;
end proc:
seq(A372199(n), n=1..70) ; # R. J. Mathar, Apr 24 2024
MATHEMATICA
a[n_] := n! Fibonacci[n] HarmonicNumber[n]; Array[a, 20] (* Stefano Spezia, Apr 22 2024 *)
CROSSREFS
Sequence in context: A156089 A110469 A121723 * A037775 A037663 A091167
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Apr 21 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 19:43 EDT 2024. Contains 373410 sequences. (Running on oeis4.)