login
A372077
The sequence T_{3,2}(n,3).
1
0, 0, 1, 3, 6, 13, 33, 84, 205, 495, 1206, 2953, 7221, 17628, 43033, 105099, 256710, 626965, 1531161, 3739428, 9132661, 22304343, 54472758, 133035889, 324906765, 793503660, 1937934241, 4732918803, 11558968326, 28229885533
OFFSET
0,4
REFERENCES
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
FORMULA
a(n) = Sum_{i=0..n-1} Sum_{j=0..n-i-2} Sum_{k=0..n-i-j-2} binomial(n - i - j - 2, 3*k)*3^k. a(n+1) = a(n) + A372076(n). - Detlef Meya, Jun 22 2024
MATHEMATICA
a[n_] := Sum[Sum[Sum[Binomial[n - i - j - 2, 3*k]*3^k, {k, 0, n-i-j-2}], {j, 0, n-i-2}], {i, 0, n-1}]; Table[a[n], {n, 0, 29}] (* Detlef Meya, Jun 22 2024 *)
CROSSREFS
Cf. A372076.
Sequence in context: A179928 A026538 A358454 * A361932 A201951 A104448
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 17 2024
EXTENSIONS
a(11) and beyond from Detlef Meya, Jun 22 2024
STATUS
approved