login
A371651
a(n) is the first prime p such that p - 2 and p + 2 both have exactly n prime factors, counted with multiplicity.
2
5, 23, 173, 2693, 32587, 495637, 4447627, 35303123, 717591877, 928090627, 69692326373, 745041171877, 5012236328123, 64215009765623, 945336806640623, 8885812685546873
OFFSET
1,1
COMMENTS
a(n) is the first prime p such that A001222(p - 2) = A001222(p + 2) = n.
3*10^9 < a(13) <= 5012236328123.
3*10^9 < a(14) <= 64215009765623.
FORMULA
a(n) > 2*A154704(n) for n > 1.
EXAMPLE
a(3) = 173 because 173 is prime, 173 - 2 = 171 = 3^2 * 19 and 173 + 2 = 175 = 5^2 * 7 are both products of 3 primes with multiplicity, and no smaller number works.
MAPLE
V:= Vector(8):
p:= 3: count:= 0:
while count < 8 do
p:= nextprime(p);
i:= numtheory:-bigomega(p-2);
if i <= 8 and V[i] = 0 and numtheory:-bigomega(p+2) = i
then V[i]:= p; count:= count+1
fi
od:
convert(V, list);
PROG
(Python)
from sympy import primeomega, nextprime
def A371651(n):
p = 3
while True:
if n == primeomega(p-2) == primeomega(p+2):
return p
p = nextprime(p) # Chai Wah Wu, Apr 02 2024
(PARI)
generate(A, B, n) = A=max(A, 2^n); (f(m, p, j) = my(list=List()); if(j==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(isprime(t-2) && bigomega(t-4) == n, listput(list, t-2))), forprime(q = p, sqrtnint(B\m, j), list=concat(list, f(m*q, q, j-1)))); list); vecsort(Vec(f(1, 3, n)));
a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Apr 13 2024
CROSSREFS
Cf. A001222. Contained in A371622.
Sequence in context: A306180 A308443 A116151 * A305127 A332688 A198026
KEYWORD
nonn,more
AUTHOR
Robert Israel, Apr 01 2024
EXTENSIONS
a(11) from Michael S. Branicky, Apr 01 2024
a(12) from Michael S. Branicky, Apr 02 2024
a(13) from Chai Wah Wu, Apr 04 2024
a(14)-a(16) from Daniel Suteu, Apr 13 2024
STATUS
approved