OFFSET
1,1
COMMENTS
FORMULA
a(n) > 2*A154704(n) for n > 1.
EXAMPLE
a(3) = 173 because 173 is prime, 173 - 2 = 171 = 3^2 * 19 and 173 + 2 = 175 = 5^2 * 7 are both products of 3 primes with multiplicity, and no smaller number works.
MAPLE
V:= Vector(8):
p:= 3: count:= 0:
while count < 8 do
p:= nextprime(p);
i:= numtheory:-bigomega(p-2);
if i <= 8 and V[i] = 0 and numtheory:-bigomega(p+2) = i
then V[i]:= p; count:= count+1
fi
od:
convert(V, list);
PROG
(Python)
from sympy import primeomega, nextprime
def A371651(n):
p = 3
while True:
if n == primeomega(p-2) == primeomega(p+2):
return p
p = nextprime(p) # Chai Wah Wu, Apr 02 2024
(PARI)
generate(A, B, n) = A=max(A, 2^n); (f(m, p, j) = my(list=List()); if(j==1, forprime(q=max(p, ceil(A/m)), B\m, my(t=m*q); if(isprime(t-2) && bigomega(t-4) == n, listput(list, t-2))), forprime(q = p, sqrtnint(B\m, j), list=concat(list, f(m*q, q, j-1)))); list); vecsort(Vec(f(1, 3, n)));
a(n) = my(x=2^n, y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Apr 13 2024
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Robert Israel, Apr 01 2024
EXTENSIONS
a(11) from Michael S. Branicky, Apr 01 2024
a(12) from Michael S. Branicky, Apr 02 2024
a(13) from Chai Wah Wu, Apr 04 2024
a(14)-a(16) from Daniel Suteu, Apr 13 2024
STATUS
approved