login
A371631
Primes whose product of nonzero digits divided by the sum of its digits is also prime.
1
167, 257, 523, 541, 617, 761, 1447, 1607, 1861, 2053, 2251, 2503, 2521, 2851, 4051, 5023, 5281, 5821, 6701, 8161, 8521, 10067, 10607, 10861, 11273, 11471, 12713, 13127, 13217, 13721, 14407, 16007, 17123, 17231, 17321, 18061, 20507, 20521, 21247, 21317, 21713, 22051
OFFSET
1,1
COMMENTS
No term N can have a "9" digit. [Proof: The sum of the digits of N is not a multiple of 3, but the numerator would be a multiple of 9, and so the number would be a multiple of 9, so not a prime.]
LINKS
EXAMPLE
167 (prime) is a term because 1*6*7/(1+6+7)=42/14=3 (prime).
MATHEMATICA
pQ[n_] := Block[{idp = DeleteCases[IntegerDigits[n], 0]}, PrimeQ[Times @@ idp/Total@ idp]]; Cases[Prime@ Range@ PrimePi[10^5], _?pQ]
Select[Prime[Range[2500]], PrimeQ[Times@@(IntegerDigits[#]/.(0->1))/Total[ IntegerDigits[ #]]]&] (* Harvey P. Dale, Sep 24 2024 *)
CROSSREFS
Subsequence of A038367.
Equals prime terms of A138566.
Sequence in context: A338343 A142329 A088291 * A140003 A015992 A065216
KEYWORD
nonn,base,easy
AUTHOR
Mikk Heidemaa, May 24 2024
STATUS
approved