login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371625
The x-coordinate of the point (x,y) where x + y = n, x is an integer, and x/y is as close as possible to phi (by absolute difference).
2
0, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 41, 42, 43
OFFSET
1,3
COMMENTS
a(n) = x = either ceiling or floor of n/phi, according to which minimizes abs(x/(n-x) - phi).
Each term is equal to or one greater than the previous term.
The average run length approaches phi.
The 4 following statements are equivalent for any real n and any function f(x) such that for any real x, f(x) equals an integer within the range (x-1,x+1) (e.g., round(x), ceiling(x), floor(x)):
A371626(n) != A371627(n),
A371626(n) != n-f(n/phi) xor A371627(n) != n-f(n/phi).
.
Let s(n) = (phi*n - 1 - sqrt(1+(n^2)*(phi^-4)))/2.
Floor(s(n)) equals the number of times that a(n) swapped from being equal to floor(n/phi) to being equal to ceiling(n/phi) when n is extended to the reals.
This is true because s(n) is the solution to the equation n = (phi/4)(phi(2w+1)+sqrt((2w+1)^2 * phi^-4 + 4/phi)) solved for w. The equation gives the n-value of w-th swap from a(n) = floor(n/phi) to a(n) = ceiling(n/phi).
s(n) is asymptotic to n/phi - 1/2.
floor(s(n)) != floor(n/phi - 1/2) <-> a(n) != round(n).
Floor(n/phi) equals the number of times that a(n) swapped from being equal to ceiling(n/phi) to being equal to floor(n/phi) when n is extended to the reals.
FORMULA
a(n) = n - A371626(n).
a(n) = ceiling(n/phi) if floor(s(n)) + floor(n/phi) is even.
a(n) = floor(n/phi) if floor(s(n)) + floor(n/phi) is odd.
a(n) = ceiling(n/phi) - (floor(s(n))+floor(n/phi) mod 2).
a(n) = round(n/phi) + floor(s(n)) - floor(n/phi+1/2)
EXAMPLE
For n=5, the possibilities are (0,5), (1,4), (2,3), (3,2), & (4,1). Of those, 3/2 is the closest to phi, so a(5)=3.
CROSSREFS
Cf. A001622 (phi), A371626 (y_coordinate), A371627 (with 1/phi), A002163 (sqrt(5)).
Sequence in context: A076935 A019446 A097369 * A257808 A249036 A096607
KEYWORD
nonn
AUTHOR
Colin Linzer, Mar 29 2024
STATUS
approved