login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371610
G.f. satisfies A(x) = ( 1 + x * (1 + x*A(x)^3)^2 )^2.
0
1, 2, 5, 30, 162, 996, 6449, 43086, 296750, 2086244, 14920110, 108202326, 793793106, 5880645408, 43931188235, 330570658228, 2503247547204, 19061888196960, 145874708874538, 1121290880430144, 8653411948545596, 67022656919955620, 520808586384360885
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(6*(n-k)+2,k) * binomial(2*k,n-k)/(3*(n-k)+1).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A137967.
PROG
(PARI) a(n, r=2, s=2, t=0, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Sequence in context: A163800 A180826 A367521 * A209325 A019027 A019031
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 29 2024
STATUS
approved