login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371615
G.f. satisfies A(x) = ( 1 + x / (1 - x*A(x)^3)^2 )^2.
4
1, 2, 5, 34, 222, 1622, 12559, 100904, 835322, 7070574, 60922335, 532566850, 4711614912, 42106192680, 379544358032, 3446755447528, 31504896429042, 289619348156494, 2675953520657839, 24836797229730316, 231461661673958896, 2165002179076830442
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(6*(n-k)+2,k) * binomial(n+k-1,n-k)/(3*(n-k)+1).
PROG
(PARI) a(n, r=2, s=2, t=0, u=6) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));
CROSSREFS
Sequence in context: A298945 A027303 A357446 * A356772 A307143 A052695
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 29 2024
STATUS
approved