login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array A(n, k), n, k > 0, read and filled in the greedy way by upward antidiagonals with distinct positive integers such that each term except A(1, 1) is a multiple of some earlier term on the same row or column.
2

%I #21 Apr 08 2024 09:12:29

%S 1,2,3,4,6,5,7,8,10,9,11,12,15,14,13,16,18,20,24,22,17,19,21,25,27,26,

%T 28,23,29,30,32,33,35,34,36,31,37,39,38,42,44,40,45,46,41,43,48,50,54,

%U 52,51,49,56,58,47,53,57,55,63,60,64,66,62,68,70,59

%N Square array A(n, k), n, k > 0, read and filled in the greedy way by upward antidiagonals with distinct positive integers such that each term except A(1, 1) is a multiple of some earlier term on the same row or column.

%C As a flat sequence, this is a permutation of the positive integers with inverse A371425 (as each row and column starts with the least missing value so far).

%C Empirically, for m > 1:

%C - the multiples of m appear along lines parallel to the borders and along two network of curves (see first illustration in Links section),

%C - the sequence mod m shows periodic patterns along the borders (see second illustration in Links section).

%H Rémy Sigrist, <a href="/A371424/b371424.txt">Table of n, a(n) for n = 1..10011</a>

%H Rémy Sigrist, <a href="/A371424/a371424.png">Scatterplot of (n, k) such that A(n, k) is a multiple of 7 and n, k <= 1000</a>

%H Rémy Sigrist, <a href="/A371424/a371424_1.png">Colored scatterplot of A(n, k) mod 7 for n, k <= 1000</a> (white pixels correspond to multiples of 7)

%H Rémy Sigrist, <a href="/A371424/a371424.gp.txt">PARI program</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%e Array A(n, k) begins: n\k | 1 2 3 4 5 6 7 8 9 10 11 12

%e ----+--------------------------------------------------------

%e 1 | 1 3 5 9 13 17 23 31 41 47 59 67

%e 2 | 2 6 10 14 22 28 36 46 58 70 74 94

%e 3 | 4 8 15 24 26 34 45 56 68 84 96 116

%e 4 | 7 12 20 27 35 40 49 62 77 91 112 119

%e 5 | 11 18 25 33 44 51 66 75 82 99 118 121

%e 6 | 16 21 32 42 52 64 80 92 105 126 144 160

%e 7 | 19 30 38 54 60 76 90 108 123 133 162 188

%e 8 | 29 39 50 63 78 87 100 124 145 156 174 200

%e 9 | 37 48 55 72 88 102 115 138 154 176 192 220

%e 10 | 43 57 65 86 104 114 135 155 171 195 215 232

%e 11 | 53 69 85 98 120 136 147 184 196 212 236 265

%e 12 | 61 81 95 117 130 152 180 183 210 235 260 285

%o (PARI) \\ See Links section.

%Y Cf. A371425 (inverse).

%K nonn,tabl

%O 1,2

%A _Rémy Sigrist_, Mar 23 2024